SMB & Midmarket Analytics & Artificial Intelligence Adoption


    SMB & Midmarket Security Adoption Trends


    Channel Partner Trends


    2024 Top 10 SMB Business Issues, IT Priorities, IT Challenges


    2024 Top 10 Partner Business Challenges


    SMB & Midmarket Predictions


    Channel Partner Predictions


    SMB & Midmarket Cloud Adoption


    Networked, Engaged, Extended, Hybrid


    Influence map & care-abouts


    Connected Business


    SMB & Midmarket Managed Services Adoption


    SMB Path to Digitalization

Techaisle Blog

Insightful research, flexible data, and deep analysis by a global SMB IT Market Research and Industry Analyst organization dedicated to tracking the Future of SMBs and Channels.
Anurag Agrawal

Midmarket Firms Piloting GenAI with Multiple LLMs, According to Techaisle Research

The landscape of GenAI is rapidly evolving, and midmarket firms are striving to keep pace with this change. New data from Techaisle (SMB/Midmarket AI Adoption Trends Research) sheds light on a fascinating trend: adopting multiple large language models (LLMs), an average of 2.2, by core and upper midmarket firms. Data also shows that 36% of midmarket firms are piloting with an average of 3.5 LLMs, and another 24% will likely add another 2.2 LLMs within the year.

The survey reveals a preference for established players like OpenAI, with a projected penetration rate of 89% within the midmarket firms currently adopting GenAI. Google Gemini is close behind, with an expected adoption rate of 78%. However, the data also paints a picture of a dynamic market. Anthropic is experiencing explosive growth, with an anticipated adoption growth rate of 100% and 173% in the upper and core midmarket segments, respectively. A recent catalyst in midmarket interest for Anthropic is the availability of Anthropic’s Claude 3.5 Sonnet in Amazon Bedrock.

This trend towards multi-model adoption signifies a crucial step – midmarket firms are no longer looking for a one-size-fits-all LLM solution. They are actively exploring the functionalities offered by various models to optimize their specific needs.

However, the data also raises questions about the long-term sustainability of this model proliferation due to higher costs, demand for engineering resources (double-bubble shocks), integration challenges, and security. Additionally, market saturation might become a challenge with several players offering overlapping capabilities. Only time will tell which models will endure and which will fall by the wayside.

Furthermore, the survey highlights a rising interest in custom-built LLMs. An increasing portion of midmarket firms (11% in core and 25% in upper) will likely explore this avenue. In a corresponding study of partners, Techaisle data shows that 52% of partners offering GenAI solutions anticipate building custom LLMs, and 64% are building SLMs for their clients, indicating a potential shift towards smaller specialized solutions.

techaisle midmarket multimodel genai

Why Multi-Model Makes Sense for Midmarket Firms

The journey from experimentation to full-fledged adoption requires a strategic approach, and many midmarket firms are discovering the need to experiment with and utilize multiple GenAI models. There are several compelling reasons why midmarket firms believe that a multi-model strategy might be ideal:

Specificity and Optimization: Various LLMs specialize in different tasks. Midmarket firms believe they can benefit from a multi-model strategy, using the best-suited model for each purpose. This may enhance efficiency and precision across a broad spectrum of use cases. Since GenAI can reflect biases from its training data, a multi-model approach also serves as a safeguard. Combining models informed by diverse datasets and viewpoints ensures a more equitable and efficient result.

Future-Proofing: LLMs are rapidly advancing, offering a stream of new features. Without a visible roadmap from LLM providers, midmarket firms hope to benefit from using various models to stay current with these innovations and remain flexible in a dynamic market. As business requirements shift, a diversified model strategy enables modification of their GenAI tactics to align with evolving needs. This strategy permits businesses to expand specific models to meet increasing demands or retire outdated ones as necessary.

Despite the benefits, midmarket firms are also experiencing challenges

High Cost: LLMs have a high price tag, particularly for smaller midmarket companies. Creating and maintaining an environment that supports multiple models leads to a substantial rise in operational expenses. Therefore, a small percentage of midmarket firms are conducting a thorough cost-benefit analysis for every model and optimizing the distribution of resources to ensure financial viability over time. Managing and maintaining multiple LLMs is time-consuming, as different models have varying data formats, APIs, and workflows. Developing a standardized approach to LLM utilization across the organization has been challenging, and a lack of engineering resources has surfaced.

Specialized Skills: Deploying and leveraging multiple LLMs necessitates specialized skills and knowledge. To fully capitalize on the capabilities of a diverse GenAI system, it is essential to have a team skilled in choosing suitable models, customizing their training, and integrating them effectively. Midmarket firms are investing in training for their current employees or onboarding new specialists proficient in LLMs.

Integration Challenges: Adopting a multi-model system has benefits but can complicate the integration process. Midmarket firms are challenged to craft a comprehensive strategy to incorporate various models into their current workflow and data systems. The complexity of administering and merging numerous GenAI models necessitates a solid infrastructure and technical know-how to maintain consistent interaction and data exchange among the models.

Midmarket Firms Intend to Adopt DataOps to Develop GenAI Solutions Economically

While large enterprises have shown how effective DevOps can be for traditional app development and deployment, midmarket firms notice that conventional DevOps approaches may not fit as well for emerging AI-powered use cases or GenAI. Techaisle data shows that only half of the midmarket firms currently have the necessary talent in AI/ML, DevOps, hybrid cloud, and app modernization. Although DevOps is great for improving the software lifecycle, the distinct set of demands introduced by GenAI, primarily due to its dependence on LLMs, poses new hurdles.

A primary focus for midmarket firms is ensuring a steady user experience (UX) despite updates to the foundational model. Unlike conventional software with updates that may add new features or bug fixes, LLMs are built to learn and enhance their main functions over time. As a result, while the user interface may stay unchanged, the LLM that drives the application is regularly advancing. However, changing and or even swapping out these models can be expensive.

DataOps and AnalyticsOps have emerged as essential methodologies tailored to enhance the creation and deployment of data-centric applications, much like those powered by GenAI. DataOps emphasizes efficient data management throughout development, ensuring the data is clean, precise, and current to train LLMs effectively. Conversely, AnalyticsOps concentrates on the ongoing evaluation and optimization of the GenAI applications' real-world performance. Through persistent oversight surrounding user interaction, DataOps and AnalyticsOps empower midmarket firms to pinpoint potential enhancements within the LLM model without requiring extensive revisions, facilitating an incremental and economical methodology for GenAI enrichment. Ultimately, midmarket firms are considering adopting DataOps and AnalyticsOps with a strategic intent to adeptly handle the intricacies inherent in developing GenAI solutions. By prioritizing data integrity, continuous performance assessment, and progressive refinement, these firms hope to harness GenAI's capabilities cost-effectively.

Final Techaisle Take

The success of GenAI implementation probably hinges on a multi-model strategy. Firms that effectively choose, merge, and handle various models stand to fully exploit GenAI's capabilities, gaining a considerable edge over competitors. As GenAI progresses, strategies to tap into its capabilities must also advance. The key to future GenAI advancement is employing various models and orchestrating them to foster innovation and success.

Anurag Agrawal

AI Beyond Boundaries - Google's Approach to Generative AI

Google, a trailblazer in Artificial Intelligence (AI), has made significant strides since the introduction of Transformers in 2017. These neural network architectures have revolutionized natural language processing and AI. Google’s dedication to making AI accessible and valuable for all is evident in its development of an infrastructure designed to manage vast data quantities while maintaining stringent data security.

Google’s innovations span Vertex AI, Duet AI, Google Cloud Infrastructure, and the AI Ecosystem. These components are intricately woven into its cloud services and workspace tools. Google acknowledges the necessity of staying abreast of current trends through innovation and the imperative of protecting AI models and data from potential threats.

Furthermore, Google emphasizes the value of partnering with service providers experienced in AI to help businesses maximize the benefits of AI products. Through these technological advancements and collaborative initiatives, Google aims to contribute significantly, especially to clients who may lack easy access to machine learning specialists.

Vertex AI: Google Cloud’s Platform for Generative AI Applications. How Google Cloud’s Vertex AI Enhances Gen AI Capabilities for Businesses

Google Cloud’s Vertex AI, a platform designed to assist developers in creating applications using Generative AI (Gen AI) models, offers new services such as Enterprise Search and Conversations. Since its launch in 2021, Vertex AI has been instrumental in managing the complete lifecycle of AI models, from discovery, training, tuning, and testing to evaluation, control, and deployment. Google Cloud Next 2023 announced significant enhancements to Vertex AI, focusing on how Gen AI capabilities can augment Vertex AI for businesses.

Anurag Agrawal

Dell GenAI: From Vision to Reality - Unlocking the Transformative Potential of Generative AI

The Dell Generative AI Portfolio exemplifies the company’s dedication to unlocking the transformative power of GenAI. With various innovative solutions, such as the Dell Validated Design in collaboration with NVIDIA for Model Customization and an open data lakehouse solution, Dell is equipping businesses with the tools they need to tackle the challenges of GenAI deployment. The Precision 7875 Tower workstation hardware launch and Dell APEX Cloud Platform for Red Hat OpenShift further highlight Dell’s comprehensive strategy. These developments not only streamline on-premises container management but also enable businesses to harness the capabilities of GenAI fully. Looking ahead, Dell’s ongoing efforts are poised to significantly influence a future where AI is integral to data-driven decision-making, creativity, and problem-solving, transforming the business landscape.

In January 2023, Dell acquired Cloudify, an open-source DevOps automation technology provider. Cloudify’s platform leverages AI to assist companies in automating their IT infrastructure and applications. Later, in August 2023, Dell acquired Moogsoft, an AI-driven IT operations analytics (AIOps) platform. Moogsoft’s platform employs AI to enable companies to identify and resolve IT issues more quickly and efficiently. These acquisitions of Moogsoft and Cloudify underscore Dell’s commitment to investing in AI and providing its customers with a broader array of AI solutions. Furthermore, Dell has formed partnerships with several others, including NVIDIA and Intel. These partnerships grant Dell access to the latest AI hardware and software, which it can utilize to develop and offer new AI solutions to its customers.

Periodically, groundbreaking technologies emerge that revolutionize our world. A few decades ago, personal computers (PCs) were the game-changers, enhancing efficiency and reshaping human experiences. This was followed by the iPhone in 2007. Today, GenAI is the technology in focus, showcasing its potential to transform business data interactions, customer engagement, and infrastructure management. However, to fully leverage this potential, it’s essential to have robust data foundations, well-structured infrastructures, and a comprehensive range of supporting services.

Dell’s portfolio is centered around providing supporting infrastructure products and services. With a broad range of GenAI solutions, Dell empowers businesses to run GenAI workloads across various platforms, including cloud environments, on-premises setups, and edge computing. The company has recently broadened its GenAI solutions portfolio by introducing Dell Validated Design in collaboration with NVIDIA for Model Customization. This includes professional services for strategy development and an open, modern data lakehouse solution. These solutions and services are designed to help businesses transform their workflows and processes throughout their GenAI journey. From data processing and model customization to strategic planning, Dell’s offerings are tailored to streamline operations for a more efficient and effective GenAI implementation.

dell ai solutions

Tailoring AI to Business Needs: Dell’s Validated Designs for GenAI with NVIDIA for Customizable Inferencing and Model Training

Anurag Agrawal

Techaisle survey shows The Rise of Generative-AI in SMBs and Midmarket Firms

According to recent survey data from Techaisle, the use of Generative-AI is rapidly increasing within SMBs and midmarket firms. The survey found that AI has become a priority for 53% of small businesses, up from 41% in April 2023. Among core-midmarket firms, 87% prioritize AI, up from 75% in April 2023. Similarly, 89% of upper-midmarket firms prioritize AI, compared to 87% in April 2023. Overall, 60% of SMBs and 84% of midmarket firms are either using or planning to use Generative-AI within the next six months.

The survey also found that between 40% and 45% of midmarket firms have developers and architects specializing in AI/ML, DevOps, hybrid cloud, and app modernization. Additionally, between 35% and 45% of these firms plan to increase their investments in Edge computing, Containers, Open-source technologies, app development, and analytics. Most notably, 72% of midmarket firms are increasing their in-house hiring for Generative-AI.

techaisle generative ai

Research You Can Rely On | Analysis You Can Act Upon

Techaisle - TA